

Plant Archives

Journal homepage: http://www.plantarchives.org
DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.010

ROLE OF PLANT GROWTH REGULATORS IN MODULATING GROWTH AND DEVELOPMENT OF BITTER GOURD IN HIGH-TEMPERATURE ENVIRONMENTS

Avinash Pal^{1*}, Mohd Talha Ansari¹, Balwant Yadav² and Ankur Kumar³

¹Department of Horticulture, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur - 233 009, U.P., India. ²Department of Entomology, Banda University of Agriculture and Technology, Banda - 210 001, U.P., India. ³Department of Vegetable Science, Banda University of Agriculture and Technology, Banda - 210 001, U.P., India. *Corresponding author E-mail: avinashbst2@gmail.com (Date of Receiving-21-05-2025; Date of Acceptance-25-07-2025)

ABSTRACT

The bitter gourd is the most common vegetable crop and is very popular for its medicinal properties, such as blood diseases, rheumatism, and diabetes. An experiment was conducted for the study on the effect of plant growth regulators on growth and yield attributes of bitter gourd at the Research Farm, IANS, DDUGU, Gorakhpur. The plant growth regulators, namely GA_3 (40 and 80 ppm), NAA (150 and 300 ppm), Ethephon (75 and 150 ppm) and Salicylic Acid (0.25 and 0.5 mM), including a control, were arranged in a Randomized Block Design (RBD) with three replications. The result shows that the spray of GA_3 (80 ppm) was found to be most effective in increasing the vine length, number of branches per plant, number of nodes, reducing the days to first female and male flower appearance, node number per branch and sex ratio.

Key words: Momordica charantia, Vegetative growth, Sex expression, Plant growth regulators.

Introduction

The bitter gourd (Momordica charantia L.) is India's most common vegetable crop and belongs to the family Cucurbitaceae, commonly known as Karaila. The bitter gourd was popular for its medicinal properties, such as blood diseases, rheumatism, diabetes, and asthma (Tania et al., 2019). The bitter gourd is used in the treatment of diabetes, reducing the blood sugar level due to the presence of charantin (Lotlikar and Rajaramrao, 1966). The bitter gourd has a different nature, which not only has fabulous digestive properties, but also it is a storehouse of remedies for some ailments, i.e., diabetes, rheumatism, and gout (Mia et al., 2014). In India, it is cultivated in an area of 113,000 ha, producing 14.33 lakh MT (Anonymous, 2023). The bitter gourd plays the role of a blood purifier, activates the spleen and liver, and is beneficial for diabetes patients (Yibchokanun et al., 2006). The 100 gm of edible part of bitter gourd contains protein (2.1g), fat (1.0g), minerals (1.4g), fiber (1.7g),

carbohydrates (10.6g), calcium (23g), phosphorus (38g), iron (2.0 g), 126 mg carotene, thiamine (0.07 mg), riboflavin (0.06 mg) and vitamin (96 mg) (Gopalan et al., 1989). Vitamin C, iron, phosphorus, and carbohydrates are present in high amounts in bitter gourd (Behera, 2004). As the three pentacyclic triterpenes momordicin, momordicinin, and momordicilin build up over time, the fruit becomes more and more bitter. However, as the fruit ripens, the bitterness subsides (Cantwell et al., 1996). The bitter gourd is an annual monoecious plant. The number of female flowers is less than the number of male flowers during flowering is 50:1, but this ratio can vary according to sustainability, i.e., 9:1 to 48:1, due to abiotic factors. The crop produces more male flowers than female flowers, which is wasteful and drastically affects crop production. Sex expression is a complex characteristic in plants and it is influenced by genetic, environmental and hormonal factors, and others. Plant growth regulators are the chemical compounds that alter plant growth and development by modifying natural 54 Avinash Pal et al.

hormone reactions. The plant growth regulators are agrochemicals, which are considered after fertilizers, pesticides, and herbicides; they enhance the source-sink relationship and stimulate the translocation of photo assimilates for better fruit setting. They help in increasing the yield level by increasing the fruit setting percentage. The use of PGRs helps increase crop production. PGRs have been utilized extensively in crop production around the world because they significantly increase crop yield. PGRs are used to increase yield (Nickell, 1982). The growth regulators work as growth and yield attributes but have varying effects with the different plant species, variety, concentration of PGRs, method of application, frequency of application and stage of application. The application of PGRs is most effective in increasing the number of female flowers and modifying the sex ratio, and the ultimate effect goes on the yield (Aishwarya, 2019). Gibberellic acid is an important PGR that helps to modify the growth attributes and yield attributes of plants (Rafeekher et al., 2002). The principle in sex modification in cucurbitaceous crops lies in altering the sequence of flowering and sex ratio. Besides the environmental factors, endogenous levels of auxins, gibberellins, ethylene, and ascorbic acid, at the time and the set of ontogenies, determine the sex ratio and sequence of flowering. Gibberellic acid (GA₂) and Naphthalene acetic acid (NAA) are two important growth regulators that are used for the changes in growth attributes and yield attributes and for increasing the fruit-setting percentage of the cucurbitaceous crops. The gibberellic acid plays an important role in promoting male sex expression and maintains the sex ratio (Rudich, 1983; Zhang et al., 2017).

Materials and Methods

The experiment was conducted at the Research Farm of the Department of Horticulture, Institute of Agriculture & Natural Sciences, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur – 233 009, U.P., during the summer season of 2024. The seed variety of bitter gourd used was Akshay and the seeds were soaked in Bavistin at a rate of 2.5 g/kg of seed for 17 hours at 25! to enhance sprouting and seedling growth. The seedlings of bitter gourd used of 30 days old for transplanting at the spacing of 90 cm × 45 cm on 10th February, 2024, in Randomized Block Design with nine treatments, including control, and replicated thrice. A spacing of 0.5 m was maintained between each replication to facilitate proper growth and data observation. During final field preparation, FYM @ 25 tonnes/ha, Nitrogen @ 100 kg/ha, Phosphorus @ 60 kg/ha and potassium @ 60 kg/ha were applied.

The field studies were conducted to evaluate the

efficacy of PGR dose and stages of application on bitter gourd, *viz*.

Table 1: Different treatments with their concentrations.

Treatment No.	Treatment bame	Concentrations
190.		
T ₁	Control	••••
T ₂	Ethephon	75 ppm
T ₃	Ethephon	150 ppm
T_4	Gibberellic Acid (GA ₃)	40 ppm
T ₅	Gibberellic Acid (GA ₃)	80 ppm
T ₆	Naphthalic Acetic Acid (NAA)	150 ppm
T ₇	Naphthalic Acetic Acid (NAA)	300 ppm
T ₈	Salicylic Acid	0.25 mM
T ₉	Salicylic Acid	0.50 mM

The plant growth regulators were used as foliar application, with Control (water spray), at 2-leaf and 4leaf and flowering stage, and after that at 30 DAS, 45 DAS and 60 DAS. Precautions were taken during the preparation and spraying of the solution from one treatment plot to another to prevent the drifting of treatments. From each treatment, three plants were randomly selected and tagged for recording vegetative growth parameters (vine length, number of primary and secondary branches, and number of nodes), phenological parameters (days taken to first flowering, days taken to 50% flowering, number of male flowers, number of female flowers, and sex ratio). After that, the mean calculation of each data of each treatment. The above-mentioned parameters data were measured at the intervals 30 DAS, 45 DAS and 60 DAS.

Results and Discussion

The influence of various plant growth regulators on vegetative growth parameters and phenological parameters of bitter gourd which are presented in Tables 2, 3 and depicted in Figs. 1 and 2.

Vegetative growth parameters

GA₃ @ 80 ppm was observed to considerably enhance vine length (45.11 cm, 87.55 cm, and 143.42 cm) during the experiment. GA₃ @ 40 ppm and Ethephon @ 150 ppm were next in line with Salicylic acid @ 0.5 mM at 30 DAS, 45 DAS and 60 DAS, respectively. The increase in the vine length of bitter gourd by GA₃ was also confirmed by Anayat *et al.* (2020), Aishwarya *et al.* (2019) and Hirpara *et al.* (2014) in bitter gourd. Kumari

Table 2 : Effect of plant growth regulators on the vegetative growth parameters of bitter gourd during the Summer of 2024.

ame branches per plant 30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS 30				Vine length	u	Num	Number of primary	mary	Numk	Number of secondary	ndary	N	Number of nodes	des
Control 30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS 45 DAS 60 DAS Control 30.22 80.37 124.22 2.33 4.44 7.00 Ethephon © 150 ppm 34.33 82.02 124.77 2.44 5.00 7.11 Ethephon © 150 ppm 36.88 83.00 131.00 2.88 4.77 6.66 Gibberellic Acid © 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 NAA © 150 ppm 36.00 83.22 128.11 2.33 4.88 7.22 NAA © 150 ppm 36.66 84.35 132.11 2.55 5.00 7.44 Salicylic Acid © 0.25 mM 36.66 84.35 132.11 2.55 5.00 7.22 Salicylic Acid © 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 CV 0.33 0.11 0.26 0.14 0.12 0.08 CD © 5.00 3.64 3.01 6.06 <		reatment name		(cm)		brar	ches per p	plant	brar	branches per plant	lant		per plant	
an @ 75 ppm 30.22 80.37 124.22 2.33 4.44 7.00 an @ 150 ppm 36.88 83.00 124.77 2.44 5.00 7.11 allicAcid @ 40 ppm 40.22 85.32 137.74 3.33 5.77 7.77 silicAcid @ 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 150 ppm 36.00 83.22 128.11 2.33 4.88 7.22 300 ppm 36.66 84.35 132.11 2.55 5.00 7.44 c Acid @ 0.5 mM 36.22 81.36 129.55 2.33 4.44 7.00 (±) 0.33 0.11 0.26 5.06 5.00 7.22 (±) 0.33 0.11 0.26 0.14 0.12 0.08 5% 3.64 3.01 6.06 0.44 0.58			30 DAS	45 DAS		30 DAS		60 DAS	30 DAS	45 DAS	60 DAS	30 DAS	45 DAS	60 DAS
pm 34.33 82.02 124.77 2.44 5.00 7.11 spm 36.88 83.00 131.00 2.88 4.77 6.66 © 80 ppm 40.22 85.32 137.74 3.33 5.77 7.77 © 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 36.00 83.22 128.11 2.33 4.88 7.22 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 16.86 6.36 6.36 8.20 28.80 20.24 7.03 3 6.4 3 6.4 3 6.4 6.0 0.44 0.28 0.28	T_1 C	ontrol	30.22	80.37	124.22	2.33	4.44	7.00	2.55	4.50	7.00	5.88	13.88	23.55
oppm 36.88 83.00 131.00 2.88 4.77 6.66 @ 40 ppm 40.22 85.32 137.74 3.33 5.77 7.77 @ 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 36.00 83.22 128.11 2.33 4.88 7.22 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 4 kg 6.33 0.11 0.26 0.14 0.12 0.08 3 kd 3.64 8.20 28.80 20.24 7.03	\mathbf{T}_2 \mathbf{E}	thephon @ 75 ppm	34.33	82.02	124.77	2.44	5.00	7.11	2.55	5.11	7.16	6.16	13.22	22.77
© 40 ppm 40.22 85.32 137.74 3.33 5.77 7.77 © 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 36.00 83.22 128.11 2.33 4.88 7.22 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 16.86 6.36 8.20 28.80 20.24 7.03 3 6.41 6.05 0.44 0.64 0.28	T ₃ E	thephon @ 150 ppm	36.88	83.00	131.00	2.88	4.77	99.9	2.94	4.83	6.73	6.27	14.22	23.00
© 80 ppm 45.11 87.55 143.42 3.66 6.22 8.11 36.00 83.22 128.11 2.33 4.88 7.22 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28	\mathbf{T}_4	ibberellic Acid @ 40 ppm	40.22	85.32	137.74	3.33	5.77	77.7	3.55	5.83	7.88	7.06	14.22	23.88
36.00 83.22 128.11 2.33 4.88 7.22 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.58 0.28	T	ibberellic Acid @ 80 ppm	45.11	87.55	143.42	3.66	6.22	8.11	3.77	6.33	8.27	7.88	15.33	25.33
0.25 mM 36.66 84.35 132.11 2.55 5.00 7.44 0.25 mM 34.66 81.36 129.55 2.33 4.44 7.00 0.5 mM 36.22 82.57 130.55 2.66 5.00 7.22 0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28	Z L	AA @ 150 ppm	36.00	83.22	128.11	2.33	4.88	7.22	2.55	5.00	7.27	6.16	13.22	23.11
34.66 81.36 129.55 2.33 4.44 7.00 36.22 82.57 130.55 2.66 5.00 7.22 0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28	T,	[AA @ 300 ppm	36.66	84.35	132.11	2.55	5.00	7.44	2.66	5.11	7.55	6.72	14.22	23.22
36.22 82.57 130.55 2.66 5.00 7.22 0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28	T _s	alicylic Acid @ 0.25 mM	34.66	81.36	129.55	2.33	4.44	7.00	2.38	4.50	7.06	5.88	13.00	22.44
0.33 0.11 0.26 0.14 0.12 0.08 16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28	T,	alicylic Acid @ 0.5 mM	36.22	82.57	130.55	2.66	5.00	7.22	2.77	5.11	7.33	6.44	13.44	22.55
16.86 6.36 8.20 28.80 20.24 7.03 3.64 3.01 6.06 0.44 0.64 0.28		S.Em. (±)	0.33	0.11	0.26	0.14	0.12	80.0	0.13	0.12	0.08	0.12	0.09	0.00
3 64 3 01 6 06 0 44 0 64 0 28		CV	16.86	6.36	8.20	28.80	20.24	2.03	28.8	20.24	7.03	39.79	11.44	6.29
		CD @ 5%	3.64	3.01	90.9	0.44	0.64	0.28	0.44	0.64	0.28	2.11	0.91	0.83

et al. (2019), Ansari and Chowdhary (2018) confirmed in bottle gourd, while Chaurasiya et al. (2016) also confirmed in muskmelon. Primary and secondary branch counts are influenced by the use of plant growth regulators. At 30 DAS, 45 DAS, and 60 DAS intervals, GA₂ at 80 ppm produced the most primary branches (3.66, 6.22 and 8.11), followed by GA₃ @ 40 ppm and Ethephon @ 150 ppm. These were comparable to Salicylic acid @ 0.5 mM and Ethephon @ 75 ppm, respectively. Gosai et al. (2020) and Kaur et al. (2016) also confirmed that GA₂ increases the number of primary branches. The plots treated with GA₃ @ 80 ppm had the most secondary branches (3.77, 6.33 and 8.27), followed by GA₂ @ 40 ppm. Other treatments were comparable at the mentioned interval. Singh and Choudhary (1989) and Dubey (1983) also confirmed that Gibberellic Acid increased the number of secondary branches. GA₃ @ 80 ppm treated plots had the most nodes per plant (7.88, 15.33, 25.33), followed by GA₃ @ 40 ppm and NAA @ 300 ppm at 30 DAS, 45 DAS and 60 DAS intervals, respectively (Table 2). Similar findings have also been found earlier by Garg et al. (2020) in cucumber, Chaurasiya et al. (2019) in muskmelon, Sandra et al. (2015) in bitter gourd and Prasad et al. (2003) in cucumber.

Phenological parameters

Plant growth regulators are reported to influence flowering and sex ratio. During the investigation, the plant growth regulators were sprayed on plants to bore male and female flowers at lower nodes with a greater number of female flowers per vine. The days taken for first flowering and the days taken to 50% flowering are also influenced by the help of spraying the plant growth regulators. Among all the PGRs, GA₂ @ 80 ppm application resulted in the minimum days taken to first flowering (35.66 days), followed by NAA @ 300 ppm, Salicylic Acid @ 0.25 mM, and NAA @ 150 ppm (35.77, 36.55 and 37.22 days, respectively) and minimum days taken to 50% flowering was observed from also GA, @ 80 ppm treated plot followed by GA₃ @ 40 ppm at par with NAA @ 150 ppm, Ethephon @ 150 ppm (52.88, 54.33, 54.88, 55.77, and 55.88, respectively) (Table 3). A similar finding was carried out by Thappa et al. (2011), Kooner et al. (2000), that the minimum number of days taken to first flowering was observed from the GA3treated plot.

As shown in Table 3, the result revealed that the application of all the treatment concentrations was found to be most significant as compared to the control. Salicylic Acid @ 0.5 mM significantly reduced the number of male flowers, followed by GA₃ @ 80 ppm, NAA @ 300 ppm

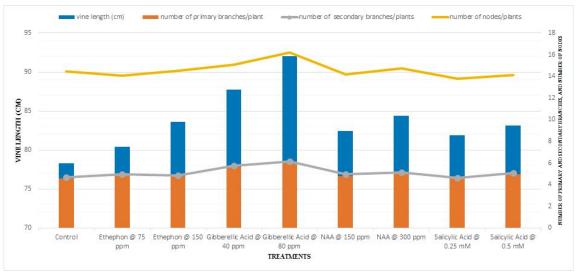


Fig. 1: Mean of the effect of plant growth regulators on the vegetative growth parameters of bitter gourd during Summer 2024.

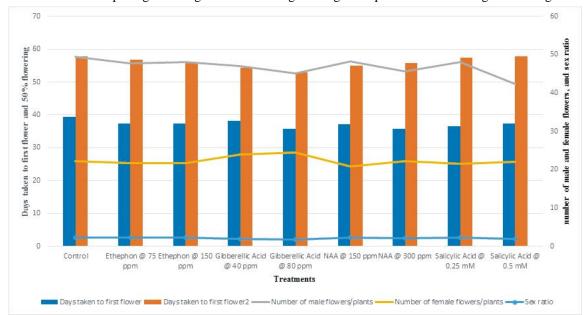


Fig. 2: Effect of plant growth regulators on phenological parameters of bitter gourd during the *Summer* season 2024.

Table 3: Effect of plant growth regulators on the number of male and female flowers, sex ratio.

Treatment no.	Treatment name	Days taken to first flower	Days taken to 50% flower	Number of male flowers/plants	Number of female flowers/plants	Sex ratio
T ₁	Control	39.44	57.88	49.44	22.22	2.22
T_2	Ethephon @ 75 ppm	37.33	56.77	47.77	21.66	2.20
T ₃	Ethephon @ 150 ppm	37.33	55.88	48.11	21.77	2.20
T ₄	Gibberellic Acid @ 40 ppm	38.11	54.33	47.04	23.88	1.96
T ₅	Gibberellic Acid @ 80 ppm	35.66	52.88	45.10	24.55	1.83
T ₆	NAA @ 150 ppm	37.22	54.88	48.22	20.88	2.30
T ₇	NAA @ 300 ppm	35.77	55.77	45.66	22.22	2.05
T ₈	Salicylic Acid @ 0.25 mM	36.55	57.33	48.14	21.44	2.24
T ₉	Salicylic Acid @ 0.5 mM	37.44	57.88	42.33	22.11	1.91
	S.Em. (±)	0.09	0.11	0.16	0.12	0.05
	CV	52.32	48.5	32.05	11.50	43.18
	CD @ 5%	12.57	18.87	16.18	1.44	23.33

(42.33, 45.10 and 45.66, respectively). The maximum number of male flowers (49.44) was found in the Control (untreated plot). The application of GA₃ @ 80 ppm significantly enhances the number of female flowers (24.55), followed by GA₃ @ 40 ppm, Salicylic Acid @ 0.5 mM and NAA @ 300 ppm (23.88, 22.11 and 22.22, respectively). Enhanced sex ratio by the spraying of GA₃ @ 80 ppm, followed by Salicylic Acid @ 0.5 mM, GA₃ @ 40 ppm (1.83, 1.91, and 1.96, respectively). Similar findings were recorded by Moniruzzaman *et al.* (2019) in bottle gourd, and Sarkar *et al.* (2019) in cucumber, and by Thappa *et al.* (2011) in cucumber.

Conclusion

The present results suggest that the application of GA₃ @ 80 ppm has a significant impact on vegetative growth parameters and phenological parameters of bitter gourd. Salicylic Acid and NAA also influence the growth and phenological parameters of bitter gourd. The application of these plant growth regulators was also found to be most effective in reducing the number of male flowers and the sex ratio of male to female flowers. However, different vegetative growth parameters, i.e., vine length (cm), number of primary branches, number of secondary branches and number of nodes per plant, increased significantly with the foliar application of GA, @ 80 ppm compared to other treatments, including control also reduce the days taken to first flowering, minimum days taken to 50% flowering, number of male flowers, number of female flowers and sex ratio.

References

- Aishwarya, K. (2019). Effect of plant growth regulators and stage of application on morphological and yield parameters of bitter gourd cv. VK-1 Priya. *Int. J. Chem. Stud.*, **7(4)**, 2688-2692.
- Anayat, R., Mufti S., Rashid Z., Wani S. and Khan I.M. (2020). Effect of gibberllic acid and cycocel on yield and quality of bitter gourd. *Indian J. Pure Appl. Biosci.*, **8(4)**, 402-06.
- Anonymous (2023). Agricultural Statistics at a Glance 2022, Economics & Statistics Division, Department of Agriculture & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India.
- Ansari and Chowdhary (2018). Effects of boron and plant growth regulators on bottle gourd (*Lagenaria siceraria* (Molina) Standle.). *J. Pharmacog. Phytochem.*, **SP.1**, 202-206.
- Behera, T.K. (2004). Heterosis in bittergourd. *J. New Seeds*, **6(2-3)**, 217-221.
- Cantwell, M., Nie X., Zong Ru J. and Yamaguchi M. (1996). Asian vegetables: Selected fruit and leafy types. *Progress in new crops. Arlington, VA*, 488-495.

- Chaurasiya, J., Verma R.B., Ahmad M., Adarsh A., Kumar R. and Pratap T. (2016). Influence of plant growth regulators on growth, sex expression, yield and quality of Muskmelon (*Cucumis melo L.*). *Ecol., Environ. Conser.*, **22**, 39-43.
- Dubey, K.C. (1983). Effect of ethrel, naphthaleneacetic acid and maleic hydrazide on growth, flowering yield of sponge-gourd. *Indian J. Agricult. Sci.*, **53(6)**, 437-441.
- Garg, P., Dev R., Raj S., Patel V.J.K. and Singh V.K. (2020). Influence of plant growth regulators (PGRs) on growth parameters and sex ratio in cucumber (*Cucumis sativus* L.). *J. Pharmacog. Phytochem.*, **9(3)**, 1658-1661.
- Gopalan, C., Rama Sastri B.V. and Balasubramanian S.C. (1989).
 Nutritive value of Indian foods. National Institute of Nutrition, Indian Council of Medical Research, 151-177.
- Gosai, S., Adhikari S., Khanal S. and Poudel P.B. (2020). Effects of plant growth regulators on growth, flowering, fruiting and fruit yield of cucumber (*Cucumis sativus* L.): A review. *Arch. Agricult. Environ. Sci.*, **5(3)**, 268-274.
- Hirpara, A.J., Vaddoria M.A., Jivani L.L., Patel J.B. and Polara A.M. (2014). Seed yield and quality as influenced by plant growth regulators and stage of spray in bitter gourd (*Momordica charantia* L.). *An International e-J.*, **3(3)**, 282-287.
- Kaur, A., Khurana D. and Dhall R. (2016). Sex modification in cucumber (*Cucumis sativus* L.) under the influence of ethephon and maleic hydrazide. *Int. J. Adv. Res.*, **4(11)**, 2199-2205.
- Kooner, K.S., Jaskaran S. and Saimbhi M.S. (2000). Effect of plant growth substances on growth, sex expression and fruit yield in bottle gourd cv. Punjab Komal. *Haryana J. Horticult. Sci.*, **29**(3/4), 268-269.
- Kumari, K., Kamalkant K.R. and Singh V.K. (2019). Effect of Plant Growth Regulators on Growth and Yield of Bottle Gourd (*Lagenaria siceraria* (Mol.) Standl.). *Int. J. Curr. Microbiol. Appl. Sci.*, 8(07), 1881-1885
- Lotlikar, M.M. and Rajaramrao M.R. (1966). Pharmacology of a hypoglycemic principle isolated from the fruits of *Momordica charantia* L. *Indian J. Pharma.*, **28**, 129.
- Mia, M.A.B., Islam M.S. and Shamsuddin J.H. (2014). Altered sex expression by plant growth regulators: an overview in medicinal vegetable bitter gourd (*Momordica charantia* L). *J. Medicinal Plant Res.*, **8(8)**, 361-367.
- Moniruzzaman, M., Khatoon R., Moniruzzaman M. and Qamruzzaman A.K.M. (2019). Influence of plant growth regulators on vegetative growth, sex expression and yield of summer bottle gourd. *Bangladesh J. Agricult. Res.*, **44(4)**, 577-590.
- Nickell, L.G. (1982). Plant Growth Regulators: Agricultural Uses. Springer Verlag, Berlin. Verlag Berlin-Heidelberg-New York, 146(1).
- Prasad, V.M., Paul B.B. and Yadav D. (2003). Effect of plant growth hormone (GA₃) on growth and yield of two varieties of cucumber (*Cucumis sativus* L.). *Bioved*, **14**, 83-85.

58 Avinash Pal et al.

Rafeekar, M., Nair S.A., Sorte P.N., Hatwal G.P. and Chandan P.M. (2002). Effect of growth regulator on the growth and yield of summer cucumber. *J. Soils & Crops*, **12**, 108-110.

- Rudich, J. (1983). Conference on the biology and chemistry of cucumber. Cornell University, Ithaca. New York. August 1980.
- Sandra, N., Sudipta B., Sukhbir S., Lal S.K., Behera T.K., Chakrabarty S.K. and Talukdar A. (2015). Effect of plant growth regulators on sex expression, fruit setting, seed yield and quality in the parental lines for hybrid seed production in bitter gourd (*Momordica charantia*). *Indian J. Agricult. Sci.*, **85**, 1185-1191.
- Sarkar, M.D., Moniruzzaman M., Alam M.S., Rahman M.J., Quamruzzaman R.N.R. and Subramaniam, S. (2019). Growth, sex expression and nutrient composition of cucumber (*Cucumis sativus*) as influenced by maleic hydrazide. *Pak. J. Bot.*, **51**, 117-123.
- Singh, R.K. and Choudhury B. (1989). Differential response of three genera of cucurbits to boron and plant growth

- regulators. Indian J. Horticult., 46(2), 215-221.
- Tania, S.S., Hossain M.M. and Hossain M.A. (2019). Effects of hydropriming on seed germination, seedling growth, and yield of bitter gourd. *J. Bangladesh Agricult. Univ.*, **17(3)**, 281-287.
- Thappa, M., Kumar S. and Rafiq R. (2011). Influence of plant growth regulators on morphological, floral and yield traits of cucumber (*Cucumis sativus* L.). *Agriculture and Natural Resources*, **45(2)**, 77-188.
- Yibchok, A.S., Adisakwattana S., Yao C.Y., Sangvanich P., Roengsumran S. and Hsu W.H. (2006). Slow-acting protein extract from the fruit pulp of Momordica charantia with insulin-mimetic activities. *Biological Pharmaceutical Bulletin*, **29(6)**, 1113 -1126.
- Zhang, Y., Zhao G, Li Y., Mo N., Jhang J. and Liang Y. (2017). Transcriptomic analysis implies that GA regulates sex expression via ethylene-dependent and ethylene-independent pathways in cucumber (*Cucumis sativus* L.). *Front. Plant Sci.*, **8(10)**, 1-13. https://doi.org/10.3389/fpls.2017.00010.